Channel flows: Twente Water Tunnel (TWT) and Twente Mass and Heat transfer Tunnel (TMHT)

The Twente Water Tunnel is an 8m high facility in which strong turbulence (up to a Taylor-Reynolds number of 300) can be created using an active grid. Light particles including micro-bubbles, finite-sized bubbles, and hollow spheres can be suspended in the turbulent flow. The setup houses bubble injection islands capable of producing mono-disperse bubbles with a concentration up to 10%. In addition, the size of the mono-disperse bubbles can be varied. These light particles may be made to rise with or against the flow, and can be observed and followed in the measuring section for long-duration tracking. The instrumentation includes 3D Particle Tracking Velocimetry, hot-film anemometry, and optical probes. A traverse system enables the movement of the cameras and other devices with the operated mean flow.

The control parameters in the TWT are the density ratio between particles and water, the particle size and concentration, the particle Reynolds number and the Taylor Reynolds number. The questions that we address with the TWT facility are the Lagrangian particle dynamics in the flow and in particular particle clustering, velocity and acceleration statistics, effect of particles on spectra and collision rates, average rise/sink velocity of particles, further Lagrangian aspects, and finally also bubbly drag reduction.

The TWT is a unique facility to explore light particle regime of the phase space in particles in turbulence: relative particle density vs. Stokes number at different turbulence levels.

Below, a video of the micro-bubbles tracked using a Moving Camera-Particle Tracking Velocimetry.

Info:


Researchers: Pim Waasdorp, Peter Dung, Jelle Will, Sander Huisman, Chao SunDetlef Lohse

Technical staff: Gert-Wim BruggertMartin Bos, and numerous of people of TCO
Collaborators: Hans Kuipers (FCRE-group U. Twente), J.F. Pinton (ENS Lyon), Federico Toschi (TU Eindhoven),  ICTR International Collaboration for Turbulence Research.
Embedding: MESA+, JMBC, European Research Network on Turbulence, ICTR International Collaboration for Turbulence Research. 
Sponsors: European Research Network on Turbulence, FOM, AkzoNobel, TataSteel, DSM, Shell, EuHIT
Previous researchers: Biljana Gvozdić, Elise Alméras, Varghese Mathai, Daniel Chehata GómezJulián Martínez MercadoJudith RensenVivek Nagendra PrakashJon BronsYoshi Tagawa

Publications

Bubbly and Buoyant Particle–Laden Turbulent Flows[arΧiv]
V. Mathai, D. Lohse, and C. Sun
Annu. Rev. Condens. Matter Phys. 11, 529–559 (2020)BibTeΧ
Mixing induced by a bubble swarm rising through incident turbulence[arΧiv]
E.O. Alméras, V. Mathai, C. Sun, and D. Lohse
Int. J. Multiphase Flow 114, 316 – 322 (2019)BibTeΧ
Dispersion of Air Bubbles in Isotropic Turbulence[arΧiv]
V. Mathai, S.G. Huisman, C. Sun, D. Lohse, and M. Bourgoin
Phys. Rev. Lett. 121, 054501 (2018)BibTeΧ
Flutter to tumble transition of buoyant spheres triggered by rotational inertia changes[Open Access]
V. Mathai, X. Zhu, C. Sun, and D. Lohse
Nat. Commun. 9, 1792 (2018)BibTeΧ
Mass and Moment of Inertia Govern the Transition in the Dynamics and Wakes of Freely Rising and Falling Cylinders[arΧiv]
V. Mathai, X. Zhu, C. Sun, and D. Lohse
Phys. Rev. Lett. 119, 054501 (2017)BibTeΧ
See also: Phys.Org. August 17, 2017
Experimental investigation of the turbulence induced by a bubble swarm rising within incident turbulence[arΧiv]
E.O. Alméras, V. Mathai, D. Lohse, and C. Sun
J. Fluid Mech. 825, 1091–1112 (2017)BibTeΧ
Microbubbles and Microparticles are not Faithful Tracers of Turbulent Acceleration[arΧiv]
V. Mathai, E. Calzavarini, J. Brons, C. Sun, and D. Lohse
Phys. Rev. Lett. 117, 024501 (2016)BibTeΧ
Translational and rotational dynamics of a large buoyant sphere in turbulence[arΧiv]
V. Mathai, M.W.M. Neut, E.P. van der Poel, and C. Sun
Exp. Fluids 57, 1–10 (2016)BibTeΧ
Wake-Driven Dynamics of Finite-Sized Buoyant Spheres in Turbulence[arΧiv]
V. Mathai, V.N. Nagendra Prakash, J. Brons, C. Sun, and D. Lohse
Phys. Rev. Lett. 115, 124501 (2015)BibTeΧ
See also: supplemental material
Energy spectra in turbulent bubbly flows[arΧiv]
V.N. Nagendra Prakash, J. Martínez Mercado, L. van Wijngaarden, F.E. Mancilla Ramos, Y. Tagawa, D. Lohse, and C. Sun
J. Fluid Mech. 791, 174–190 (2016)BibTeΧ
The clustering morphology of freely rising deformable bubbles[arΧiv]
Y. Tagawa, I. Roghair, V.N. Nagendra Prakash, M. van Sint-Annaland, J.A.M. Kuipers, C. Sun, and D. Lohse
J. Fluid Mech. 721, R2 (2013)BibTeΧ
How gravity and size affect the acceleration statistics of bubbles in turbulence[arΧiv]
V.N. Nagendra Prakash, Y. Tagawa, E. Calzavarini, J. Martínez Mercado, F. Toschi, D. Lohse, and C. Sun
New J. Phys. 14, 105017 (2012)BibTeΧ
Featured in: "Highlights of 2012 - New Journal of Physics (NJP) - Soft Matter and Biophysics
Lagrangian statistics of light particles in turbulence[arΧiv]
J. Martínez Mercado, V.N. Nagendra Prakash, Y. Tagawa, C. Sun, and D. Lohse
Phys. Fluids 24, 055106 (2012)BibTeΧ
Three-dimensional Lagrangian Voronoï analysis for clustering of particles and bubbles in turbulence[arΧiv]
Y. Tagawa, J. Martínez Mercado, V.N. Nagendra Prakash, E. Calzavarini, C. Sun, and D. Lohse
J. Fluid Mech. 693, 201–215 (2012)BibTeΧ
On bubble clustering and energy spectra in pseudo-turbulence[arΧiv]
J. Martínez Mercado, D. Chehata Gómez, D.P.M. van Gils, C. Sun, and D. Lohse
J. Fluid Mech. 650, 287–306 (2010)BibTeΧ
Evolution of energy in flow driven by rising bubbles[arΧiv]
I. Mazzitelli and D. Lohse
Phys. Rev. E 79, 066317 (2009)BibTeΧ
Particles go with the flow
D. Lohse
Phys. 1, 18 (2008)BibTeΧ
Dimensionality and morphology of particle and bubble clusters in turbulent flow[arΧiv]
E. Calzavarini, M. Kerscher, D. Lohse, and F. Toschi
J. Fluid Mech. 607, 13–24 (2008)BibTeΧ
Universal Intermittent Properties of Particle Trajectories in Highly Turbulent Flows
A. Arnèodo, R. Benzi, J. Berg, L. Biferale, E. Bodenschatz, A. Busse, E. Calzavarini, B. Castaing, M. Cencini, L. Chevillard, R. Fisher, R. Grauer, H. Homann, D. Lamb, A.S. Lanotte, E. Lévèque, B. Lüthi, J. Mann, N. Mordant, W.C. Müller, S. Ott, N.T. Ouellette, J.F. Pinton, S.B. Pope, S.G. Roux, F. Toschi, H. Xu, and P.K. Yeung
Phys. Rev. Lett. 100, 254504 (2008)BibTeΧ
Quantifying Turbulence-Induced Segregation of Inertial Particles[arΧiv]
E. Calzavarini, M. Cencini, D. Lohse, and F. Toschi
Phys. Rev. Lett. 101, 084504 (2008)BibTeΧ
Energy spectra in microbubbly turbulence
T.H. van den Berg, S. Luther, and D. Lohse
Phys. Fluids 18, 038103 (2006)BibTeΧ
Hot-film anemometry in bubbly flow I: bubble–probe interaction
J. Rensen, S. Luther, J. de Vries, and D. Lohse
Int. J. Multiphase Flow 31, 285 – 301 (2005)BibTeΧ
The effect of bubbles on developed turbulence
J. Rensen, S. Luther, and D. Lohse
J. Fluid Mech. 538, 153–187 (2005)BibTeΧ
On the relevance of the lift force in bubbly turbulence
I. Mazzitelli, D. Lohse, and F. Toschi
J. Fluid Mech. 488, 283–313 (2003)BibTeΧ
The effect of microbubbles on developed turbulence
I. Mazzitelli, D. Lohse, and F. Toschi
Phys. Fluids 15, L5–L8 (2002)BibTeΧ
Induced bubble shape oscillations and their impact on the rise velocity
J. de Vries, S. Luther, and D. Lohse
European Physical Journal B 29, 503–509 (2002)BibTeΧ


AQUA
Max Planck Gesellschaft
4TU Precision Medicine
MCEC
Twente
Centre for Scientific Computing
YouTube
Twitter