
Chair: Physics of Fluids group

Vaporization dynamics of superheated microcapsules

Description

Intumescent coatings are state-of-the-art fire protection resins, that are now extensively applied on steel construction. Upon exposure to fire, these coating massively generate bubbles (intumescence) and thereby swell before stabilizing in a charred configuration. The effect on heat diffusion is 2-fold: the increased thickness as well as the large gas content. Both severely decrease heat diffusion, which allows saving the construction. Unfortunately, these coatings rely on a chemical process that cannot be further controlled or improved.

Within the physics of fluids group, we are developing a new generation of coatings based on the more controlled and more efficient vaporization of microdroplets embedded in the coating. There remain, however, fundamental hurdles to overcome before such a coating can be constructed. In this project, you will explore the physical effect of cross-linked polymeric shell on the vaporization of encapsulated microdroplets as they superheat and vaporize in a hot oil bath. Understanding the physical impact of the stabilizing shell is critical to this new technology.

Figure 1. a) Bright field and b) SEM images of polymeric microcapsules. c) Top: Ultra-high-speed recording of a vaporizing capsule. Bottom: Evolution of bubble radius, red dots depict the frames of the top panel. (*Nature Communications*)

Assignment

- Production, characterization, and optimization of monodisperse microcapsules.
- Work on the high-speed imaging experiments of microcapsules vaporization and analysis.
- Understand the theory that governs the dynamics of superheated bubbles resulting from an encapsulated droplet.

Keywords:

Vaporization, Superheated microcapsule/bubble, Heat and mass transfer, Phase-change dynamics, High-speed imaging, Image processing, High-temperature experiments, Polymer-based 3D Microfluidics, 3D-printer.

Supervision	E - mail	Tel.	Office	Project
				room
Saeed Saleem	m.s.saleem@utwente.nl	0685172817	ME 114a	ME 207 C
Guillaume Lajoinie	g.p.r.lajoinie@utwente.nl	053 489 4213	ME 214c	ME 207 C
Michel Versluis	m.versluis@utwente.nl	053 489 6824	ME 260	ME 207 C